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Abstract-The stability of the previously derived steady laminar flow of an idealized induction furnace 
is analysed by means of the perturbation technique commonly used for stability analyses [l]. It is shown 
that the minimum critical Grashof number for molten iron is 19 000 occurring for a skin depth to 
radius ratio of one half. Calculation then shows that the tolerable temperature gradient across a 
radius is very small so that stirring action under the influence of thermal buoyancy forces is generally 

turbulent. 

INTRODUCTION 

IN A PREVIOUS paper [l] a steady laminar solution 
to the thermally induced flow of an induction 
furnace was obtained using the idealization 
shown in Fig. 1. Density variations in the charge, 
brought about by temperature differences, give 
rise to buoyancy forces under whose influence the 
fluid motion is upward near the axis and down 
near the walls. This mode of operation of the 
furnace is important only when the magnetic 
field is almost entirely axial so that the effect of 
electromagnetic stirring can be neglected. 
Accordingly, an infinite model was used to 
eliminate electromagnetic stirring forces. Rect- 
angular rather than cylindrical coordinates were 
used to avoid Bessel functions for the sake of 
computational ease. In that analysis the velocity 
V,, temperature T, and complex magnetic field 
H,, (with exponential variation exp:[jwot] under- 
stood) were found to be 
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where TI is the wall temperature, u and K are the 
electrical and thermal conductivities, and the 
skin depth 6 = ~/(~/wo~ou) (~0 is the permea- 
bility). These represent solutions to the system 
of magnetohydrodynamic equations 

p; 
[ 
a;+(v*.v)v* 1 = - VP* + pv2 v* 

+ PO(V x H*) x H” + p*g (5) 

where p* = po[l - F(T* - To)1 
v-v* = 0 (6) 
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FIG. 1. Geometry of idealized model for thermally 
induced flow; I =: linear current density of coil in 
A/unit, y = dimension, wo = frequency in radians/s, 

h -= furnace radius in meters, t =: time in seconds. 

after taking time averages of the equations over 
one cycle in time and assuming the fluid is 
incompressible. Note that unstarred quantities 
are time averages of the corresponding time 
dependent starred quantities. The assumption 
employed in this process is that the mechanical 
and thermal time constants are long compared 
with the electrical period of excitation so that 
there is only a steady velocity, pressure and 
temperature response to the d.c. component of 
the forcing functions. Quantities not defined so 
far are: TO, a constant mean temperature from 
which temperature variations are measured; PO, 
the mean density corresponding to TO; p., the 
dynamic viscosity; B, the coefficient of volume 
expansion; g the gravitational acceleration: CV, 
the specific heat at constant volume; and P, the 
pressure. 

The object of this analysis is to determine the 
range of parameters over which the thermally 
driven flow just described is stable. The problem 
arises since flows originating from free convec- 
tion are known to be easily disturbed. The 
approach is very similar to the work of Gershuni 
and Zhukhovitskii [2] who have studied the 
stability of stationary convective flow of a liquid 
conductor between heated vertical plates in the 
presence of a d.c. magnetic field. For the purpose 
of checking the equations derived here, their 
terminology is followed closely, even though this 
problem deals with a.c. fields. 

Basically, the approach is to perturb the 
steady Iaminar solution assuming changes in the 

tields of small amplitude. The perturbed 
quantities are given an exponential variation 
with time and are made space periodic with 
respect to the coordinate variables for which 
the flow goes to infinity or does not vary. For 
the model under consideration the variations 
take the form f’(.~) exp [i(wt --- K.v)] where,f(x) 
determines the profile ; the reciprocal wave 
number, l;~, the size of the cell: and the fre- 
quency, w. the stability of the flow. This form 
gives rise to plane perturbations. although a 
more detailed analysis would specify a wave 
number for the z-direction, c.orresponding to 
cell structure in the azimuthal direction of cylin- 
drical coordinates. 

The classic example illustrating the cell struc- 
ture that develops is the BCnard problem of the 
instability of a layer of fluid heated from below 
[3, 41. Here, as the buoyancy forces increase 
under the influence of an adverse temperature 
gradient, a critical gradient is reached at which 
these forces exceed the viscous forces. The fluid 
then breaks from the stable or motionless state 
into instability which manifests itself as steady 
thermal convection within a cellular pattern that 
is periodic in all horizontal directions. The 
critical gradient is expressed as a critical Grashof 
number which is a measure of the ratio of inertial 
forces induced by convection to the viscous 
forces or as the product of the Grashof and 
Prandtl numbers called the Rayleigh number. 

Instability. however, need not set in as steady 
convection as in the BCnard problem (corre- 
sponding to w ~-:- 0) but may appear as traveling 
perturbations. This is determined by the nature 
of the frequency w for which solutions to the 
perturbation equations exist. 

For a given flow to be stable any disturbance 
must decay with time, indicating that Tm(w) 0 
where Im means imaginary part of. On the other 
hand, the flow is unstable and the disturbance in- 
creases with time when Im(w) <I 0. Thus, one is 
interested in solving for the neutral perturbation 
state defined by the condition Im(w) _: 0 in 
which w is a real quantity. When instability in the 
form of stationary convection does in fact arise, 
the solution w ~: 0 results but may not be 
assumed a priori. 

In brief, the steps in the analysis are as follows. 
First, the perturbations are given an exponential 
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form and are substituted into the perturbation 
equations. The result is an eigenvalue problem for 
which solutions in w and K are sought as some 
physical parameter (the Grashof number in this 
case) is varied. When approximate functions are 
used, a homogeneous system of equations results, 
and the eigenvalue problem arises by the re- 
quirement that the system determinant must 
vanish for solutions to exist. The remainder of 
the procedure is to equate to zero the real and 
imaginary parts of the system determinant (con- 
sidering w a real quantity), eliminate w from this 
pair of equations, and plot the neutral curve in 
the G-K plane (where G = Grashof number and 
K = wavenumber). The stability analysis follows 
this procedure. 

PERTURBATION EQUATIONS 

Adding the small perturbation quantities v*, 
0* 9 P*, and h* to the stationary quantities V, 
T, P, and H* developed in reference 1, the 
quantities V +- v*, T + tl*, P + p*, and H* + h* 
must satisfy equations (5) through (9). Neglecting 
products of small quantities and recalling that 
the stationary solution already satisfies these 
equations, one obtains for the perturbation 
equations 

po ~t+vv+v.vv* 
( 1 

=-_vp* 

-+ c~v’) V* - p0 go* g -- PO v H* . h” 

+pOH*,Vh*+poh*.VH* (10) 

( 

ae* 
po c, -Tt - v *‘vT+v’ve* =Kv’e 

) 

+ -2, [(V x H*) . (V x h*)l, 

V .v* = O> and V. h* = 0 (11) 

I 
= V2h* (12) 

Now the time variation of the perturbation 
terms is exp [jut]. The terms involving the 
magnetic fields in the right side of equation (10) 
are neglected in this analysis. These terms repre- 
sent a retarding body force exerted upon the 
fluid when it flows in the radial direction. The 

force arises from the interaction of the applied 
axial magnetic field with the azimuthal current 
induced by the radial flow of the liquid metal. 
When the force is averaged in time, it varies as 
exp [jut]. This force increases the stability of the 
stationary flow [2]. However, in the coreless 
induction furnace this force is weakened by the 
skin effect which greatly lowers the amplitude 
of the applied magnetic field in regions located 
more than one skin depth away from the con- 
taining vessel wall. The dropping of the in- 
duced body force is also consistent with the 
magnetic Reynolds number encountered in most 
furnaces. Using a value of 0.46 m as the 
characteristic size and letting the velocity be 
10 cm/s (reasonable for stirring due to buoyant 
forces) [I I] yields a magnetic Reynolds number 
of 0.04. Hence our solution neglects the stabiliz- 
ing body force and applies when &, < 1 and 
b’ > 2. Equations (10) and (11) are then written 
more simply as 

po 
t 

T -t v* * vv f v * vv* 

1 

= - vp* +v+* - pope*g (13) 

(14) 

and no longer depend on the magnetic field. In 
other words, flow induced magnetic fields are 
considered to be small compared to the applied 
field Hi. The curl of (13) eliminates the pressure 
gradient and yields 

povx a;+v*.vv+v.vv* 
t 1 

=pv x v2v* - po~v~ e*g (15) 
which may be solved together with (14) for the 
velocity and temperature perturbations. 

When a plane perturbation is assumed with no 
motion in the z direction, the quantities depend 
on X, y, and t and vary asf(x) exp [j(d + KY)]. 

Choosing a stream function #* the velocity 
components are 

vE = - $ 
[ 
#(x) exp [.i(wt + KY) 1 (16) 
WI exp [.iW + ~11 1 (17) 



724 N. J. DAMASKOS and F. J. YOUNG 

and the temperature perturbation is 

8” = e(X) eXp [j(& f KY>] (18) 

Recalling that V = V,(x) j and T = T(x) and 
noting that a/ax = ‘, ajay = jk and alat = jw 

equations (14) and (15) become, upon substitut- 
ing (16) to (18). 

pOCv(jUB+jKVye-.iKT'~j 

= K(8)' - K2 0) (20) 

For ease of solution the equations are put into 
dimensionless form. Choosing the “radius” b as 

a measure of distance, v/b (where v = p/p0 is the 
kinematic viscosity) as a measure of velocity, v/b2 
as a measure of frequency, and the maximum 
difference Ql = 12/4u~ as a measure of tem- 
perature, one defines the dimensionless variables 

X = x/b, + = #Iv, K = tcb, Sl = wb+, 

V = V,b/v, 0 = O/Ql, t = (T - Tlj/Ql. 

Defining the Prandtl number Pr = pC,/k, the 
Grashof number G = /3gb3QJv2, the diameter 
to skin depth ratio b’ = 2b/6, displaying V and t 
[given by equations (1) and (2)], the dimension- 
less perturbation equations are 

+1v-2K2+n+K4+-jS2(+u-K2+j 

-jK[(+“-- K2 +jV - + V”] + G 0’ = 0 

(21) 
(0”-K20) -jjPPrO-jKPrV@ 

+jKP,t’+ =0 (22) 

where 

t=1- 
ch b’X + cos b’X 

ch b’ + cos b’ 

The boundary conditions are that the normal 
and tangential perturbed velocities and the 
perturbed temperature should vanish at the wall, 
or in terms of $ and 0 

+(&I) = +‘&I) = o(& 1) = 0 (23) 

USE OF THE GALERKIN METHOD 
The solution of the eigenvalue problem, de- 

fined by equations (21) and (22) and their 
boundary conditions, is carried out by the 
Gale&in method whose application to this 
problem is now described. 

The basic idea of the method consists in 
approximating the solution to the differential 
equation by selecting a linear combination of 
approximate functions that satisfy the boundary 
conditions. These are linearly independent and 
represent the first i functions of some system 
of functions chosen from a complete set in 
the given region. Examples of such sets are 
the trigonometric functions and powers of the 
independent variables. 

Denoting the approximations to the stream_ 
function and temperature perturbations as # 

and 6 and choosing the first i functions I/J~ and 
05 from an appropriate complete set, such that 
the $r and Oi each satisfy the boundary con- 
ditions (23), then 
_ 
$(X) = c UI $t(X) and 0 = Z; bi Q{(X) (24) 

1 1 

where the Gale&in coefficients ai and bi are to be 
determined. Further, defining the differential 
operators L(+, 0) and M(+, Oj, corresponding 
to the left side of (21) and (22) respectively, the 
system of equations to be solved is 

ch b’X - cos b’X 
the approximate solution into the differential 
equations and then requires that the weighted 
averages of the residuals over the desired interval 

TL - TI 3 sh b’ - sin b’ should vanish [5]. The weighting functions are the 
-= 

Ql ’ + @ ch b’ + cos b’ 
approximating functions. This is also referred 

3 ch b’ - cos b’ 
to as an orthogonality method falling in the 

-- same category as the least squares method [6]. 
b’s ch b’ + cos b’ Duncan [7] shows the equivalence of the two 

(25) 
Equation (25) is a statement that one substitutes 
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methods when a large number of approximating 
functions is used. 

If the differential equations are homogeneous, 
(25) leads to a homogeneous system of algebraic 
equations in the unknowns aa and bi. These 
give rise to a compatibility condition which 
expresses the fact that (25) has a non-trivial 
solution only if the determinant of the set 
vanishes. 

As pointed out in reference 8 the method is 
quite similar to the Ritz method, although 
perfectly universal in that there is not necessarily 
a formal connection between the given equation 
and a variational problem. The accuracy of the 
approximation improves rapidly if, in addition 
to the primary boundary conditions, the approxi- 
mate functions satisfy secondary boundary 
conditions (derivable from the differential equa- 
tion). Lastly, Duncan shows that if the errors 
in the amplitude of the approximating functions 
are taken to be of first order, the Galerkin 
method yields errors in frequency that are of the 
second order. This property and the inclusion of 
secondary boundary conditions on temperature 
are used as justification for restricting the 
approximating functions to a single term. Since 
the symmetry of the problem forces + and 8 
to be only even or only odd (as is shown in the 
following section), the accuracy of the approxi- 
mation is expected to be comparable to that of 
the study by Gershuni and Zhukhovitskii [2] 
where two terms (one even and one odd) were 
used to approximate a condition of asymmetry. 

Recalling that V and V” are even functions 
and that t’ is odd, equations (21) and (22) show 
that even components of + give rise to terms of 
odd symmetry only in 8, and also that odd terms 
in + correspond only to even terms in 8. Hence, 
these combinations are independent, in~cating 
the possible existence of the two modes. The 
mode for which 0 is even and + odd is called the 
even mode, since u*, is also an even function of 
x. Conversely, Q odd and JI even is the odd 
mode. These are illustrated, at the onset of 
instability, in Fig. 2, the contours repainting 
either stream lines or lines of constant tempera- 
ture. 

A convenient set of complete functions for 
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FIG. 2. Cell structure at the onset of instability. {a) The 
even mode cell structure which also gives the odd mode 
tern~~t~e cell structure. (b) The odd mode velocity cell 
structure which also gives the even mode temperature cell 

structure. 

constructing the +g and 0~ are the powers of X: 
1, x, xz,xs, . * * . The boundary conditions (23) 
show that the trial functions +r must vanish to- 
gether with their derivatives at X = -f 1. For 
the temperature perturbation the 0r must vanish 
at X = + 1, but these functions are also made to 
satisfy the secondary boundary condition given 
by (22), 0” (&l) = 0. To illustrate the compu- 
tation the second trial function is included in the 
table below: 

Function Even mode Odd mode 

(I - X2)2 
X2(1 - X2)2 

(1 - xqo( - X2) X(1 - X9(7 - 3x9 
xy1 - x8* - 5x2) X3(1 - xqo(1 - 7x2) 
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Considering only the single term approximation, 
+ = aI+ and 0 = b101, the system~ofequations 
(25) becomes 

EII al + Ge br -== 0) 

EZI al + 2%~ br_ = O,f 
(26i 

where 

El1 -= ‘411 +.j 8 BLL +.jKG Cl1 

El2 = RI1 

EZI =.iKPrcjl~ 

Ez2-a~l-_jS1P,blr-jKGP,cll 

and where 

Bn = j (-+r:’ + K2 $1) $1 dX 
-1 

DII = f 0; +I dX 
-1 

a11 = _[ (0; - IQ 01) 01 dX 

blr = i 0; dX, QI = i Y-0! dX, 
-1 -1 

&I = f ‘+101dX 
-1 

and Y 1 = V/G 

The script velocity, Y, has been introduced so as 
to make the Grashof number apparent. Dividing 
out the Prandtl number the system determinant 
is 

- AH (a bll 
all 

+ K G cI1) -+ Pr 

(0 B11 + K G CH) - K G 41 DII == 0 (29) 

Since Q is not a factor of either equation, ~‘2 -= 0 
is not a per~ssible solution. This shows that 
instability in the form of steady thermal con- 
vection cannot arise in the problem formulated. 

Solving (29) for Q one obtains 

$2 r_= K G(& DU +~CII -hl,m Cd -... 
.-- An bll i hIPr) &I 

K G F(b’, K, Pr) (30) 

which when substituted into (28) yields the 
neutral curve relation in the G-K plane 

----An adPr _-._-- 
(&I F + Cn) (611 F + 4 

(31) 

The neutral curve relation (31) is a function of 
K, b’ and P,.. Since the Prandtl number is constant 
for a given liquid metal one may plot neutral 
curves of G vs K for each value of b’. The 
minimum value of G for each curve is plotted in 
turn versus b’ and yields the desired critical 
curve which gives the Grashof number above 
which instability sets in for each value of h’. 

RESULTS AND CONCLUSIONS 

Using equation (3 i) neutral stability curves of 
G, vs K were plotted as b’ was varied. The 
computation of the integrals CH and CII was 
performed numerically using Simpson’s rule and 
160 intervals over the normalized “radius”. ‘It 

,411 +j ii2 &I +j K G Cl1 G D11 I 

.iKdu 
a11 

I 

Z 0 
---_jSLb~l-jKGcr1 
P, 

(27) 

Equation (27) determines the characteristic was felt that this approach is less subject to error 
frequencies, W, of the perturbation. than the many integrations by parts required 

For the neutral perturbation state Im@) =T; 0 because of products of X10 with h~erbolic and 
and 9 is considered a real quantity. Expanding circular functions. 
(27) and equating the real and imaginary parts to Tt was found that symmetrical or even pertur- 
zero yields the pair of equations bations do not lead to instability, but that odd 
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perturbations do. This is also true in ordinary Fig. 3 for molten iron and also mercury. Points 
hydrodynamics where a symmetrical stationary on each curve (representing a given value of b’) 
flow in the J direction is stable for symmetrical were computed at K = O-0625, 0.125, O-25, O-5, 
and unstable for antisy~et~~l ~sturban~s 1.0, 2.0, 4.0, 8.0 and 160. No solutions were 
[93. Since the odd mode requires flow across a found for K >, 4.0 nor for any value of K along 
“diameter” (see Fig. 2) and there is no preferred b’ = 100. For each value of b’ the critical 
orientation in the actual cylindrical geometry, Grashof number corresponds to a space period 
one would expect the onset of instability as a or wavelength of one radius, i.e. K = 1. The 
growing perturbation to break up the flow. critical values are plotted against 6’ in Fig. 4. 

The curves of neutral stability are given in 

\ 
\ 

\ 

60625 0.25 1-o 4-o 

Wave number, K 

Frc,. 3. Neutral stability curves for odd mode: --- 
molten iron (P, = 0.1); - - mercury (P, = 0.02). 

‘O” 3 

1 10 

Dimensionless radius, b’ 

FIG. 4. Critical Grashof number vs b’: --- molten 
iron (P, = 0.1); - - mercury (PI = 0.02). 

For a given exciting current it is seen that insta- . 
bility is most apt to set in at the frequency 
corresponding to maximum velocity or when 
b’ = 4.07. The minimum critical Grashof 
number, Gna, is 19 000 for molten iron and 
95 000 for mercury. 

By way of comparison the critical Rayleigh 
number (equal to P,. Gm) for the onset of thermal 
convection in the Btnard problem is 1708 when 
both surfaces are rigid and 1101 when the upper 
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surface is free [lo]. The corresponding values of 
Gm for molten iron are 17 080 and 11 010 and 
are to be compared with a value of 19 100 for 
this analysis. 
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R&urn&--La stabilitt de l’&coulement laminaire permanent d’un fourneau a induction idealist qui a 
Btg d&r& auparavant est analysk au moyen de la technique des perturbations employee ordinairement 
pour les analyses de la stabilitb [l]. On montre que le nombre de Grashof critique minimal pour le fer 
fondu est 19 000 pour un rapport de profondeur d’effet de peau au rayon de un demi. Les calculs 
montrent alors que le gradient de temperature tolbable le long du rayon est t&s petit telle faGon que 

l’agitation sous l’action des forces d’Archim&de thermiques est gknkralement turbulente. 

Zusammenfassung-Mit Hilfe einer gewiihnlich fiir Stabilit&tsanalyscn verwendeten Stiirtechnik, wird 
die Stabilitat der vorher abgeleiteten station&en laminaren StrGmung eines idealisierten Induk- 
tionsofens analysiert [I]. Es wird gezeigt, dass die kleinste kritische Grashofzahl fiir geschmolzenes 
Eisen 19 000 ist, die bei einer Wandstlrke entsprechtnd einem RadienverhBltnis + auftritt. Die 
Berechnung zeigt dann, dass der zullssige Temperaturgradient am Radius sehr klein ist, sodass die 

Riihrwirkung unter dem Einfluss thermischer Auftriebskrlfte im allgemeinen turbulent ist. 

AHHOTI-L~HZX-~CTOWIEBOCTbCTaqEZOH3PHO~OJIaMIIH3PHO~O IIOTOIEaB HneWIbHOti IIHJ(J'IEI$MOH- 
IIOzt IIf%ll aHEUI5I3IipyeTCH C IIOMOIQbIO MeTOAa BOaMy~eHIIi, 06bIqHO HCnOJIbByeMOr0 AJIH 
aHaam3a YCT~~~HB~CTH [l]. IIoKasaKo, 9To MMHaMaJIbKoe KpKTnsecKoe ‘Inczo !?pacro$a AnH 
PaCnJIaBJIeHHOrO ?Ktteneaa COCTaBJIXeT 19(.)00 IIpII OTHOmeHHH @j@eKTHBHOI% rJIy6HHM IIpO- 
HHKHOBeHIlR nepeMeHHor0 ToKa K pwIlycy 1: 2. PacqeToM noKa3aH0, qT0 AonycTI?bIi TOM- 
nepaTypKbIi rpaAHenT nonepeK pannyca 04eHb Man, TaK 9To nepewemaBaHne noA BJIIiHmieM 

TepMM=IeCKHX nOA%MHbIX CLlJI RBJIHeTCR Typ6YJIeHTHbIM. 


